Non Destructive Prediction of pH in Mango Fruits cv. Gedong Gincu Using NIR Spectroscopy

Yohanes Aris Purwanto, Putri Wulandari Zainal, Usman Ahmad, Sutrisno Mardjan, Yoshio Makino, Seiichi Oshita, Yoshinori Kawagoe, Shinichi Kuroki

Abstract—Nearinfrared(NIR)spectroscopytechniqueshasshownpromisessorapid and non-destructivevaluestoevaluatethevarious internal quality attributes of mango fruits. In mango fruits cv Gedong Gincu, acidity (pH) is one of the main quality attributes. Prediction of acidity in mango fruits is generally carried out destructively. The objective of this study is to develop a calibration model and prediction of pH in mango fruit cv. Gedong Gincu using NIR spectroscopy. The transmission spectrum of mango fruits were obtained in the wavelength range from 1000 to 2400 nm. The prediction model was developed by partial least square(PLS) regression. The coefficient of correlation (r) was 0.9042 and the standard error of prediction (SEP) was 0.12, respectively. It is concluded that by using the NIR measurement system, in the appropriate spectral range, it is possible to nondestructively predict the pH of mango fruit.

Index Terms—Non destructive prediction, pH, near infrared spectroscopy, mango fruit cv. Gedong Gincu

This work was supported by Bilateral Exchange Program JSPS-DGHE Joint Research Project 1-4-2010 to 31-3-2012 (JSPS/AP/109596 November 20, 2009).

Yohanes Aris Purwanto is with the Department of Mechanical and Biosystem Engineering, Bogor Agricultural University, IPB Darmaga Campus, Bogor 16880, Indonesia, and the Center for Tropical Horticultural Study, Bogor Agricultural University (corresponding author phone: +62-251-8623026; fax: +62-251-8623026; e-mail: arispurwanto@gmail.com).

Putri Wulandari Zainal was with the Department of Mechanical and Biosystem Engineering, Bogor Agricultural University, IPB Darmaga Campus, Bogor 16880, Indonesia (Email: owale_molec@yahoo.com).

Usman Ahmad is with the Department of Mechanical and Biosystem Engineering, Bogor Agricultural University, IPB Darmaga Campus, Bogor 16880, Indonesia (Email: usmanahmad@ipb.ac.id).

Sutrisno Mardjan is with the Department of Mechanical and Biosystem Engineering, Bogor Agricultural University, IPB Darmaga Campus, Bogor 16880, Indonesia (Email: kensutrisno@yahoo.com).

Yoshio Makino is with the Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan (Email: amakino@mail.ecc.u-tokyo.ac.jp).

Seiichi Oshita is with the Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan (Email: aoshita@mail.ecc.u-tokyo.ac.jp).

Yoshinori Kawagoe is with the College of Bioresource Sciences, Niho University, 1866 Kameino, Fujisawa 252-0800, Japan (Email: kawagoe@shinou@nihon-u.ac.jp).

Shinichi Kuroki is with the Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan (Email: skuroki@dragon.kobe-u.ac.jp).

1. INTRODUCTION

Mango fruits (Mangifera indica L.) cv. Gedong Gincu is one of the exotic tropical fruits from Indonesia. This cultivar has potential a good price in the world market due to its sweet taste, medium size and beauty orange color. To ensure the supply of high-quality fruit, it is important to select fruit with the proper degree of maturation. Various scientists have considered maturity from different perspectives [1]. Acidity (pH) is one of the internal quality indices for mango fruits. The method to measure this internal quality is still destructive. Therefore, it is essential to develop efficient and non-destructive methods for measuring the internal attributes of fruit such as acidity (pH).

Nearinfrared (NIR) spectroscopy is a fast, easy-to-use and non-destructive analytical technique [2]. NIR spectroscopy has decisive advantages compared to traditional methods, whereby it analyse sample rapidly (a few seconds per sample) and no need sample preparation [3]-[5]. In addition, it is a chemical-free (limited to the reagents required for reference analyses and no waste is produced [4][6] and can be carried out on-line [5].

The use of NIR spectroscopy to measure internal quality attributes of fruits produce has been investigated extensively during the last decade. Use of NIR spectroscopy in fruit is receiving extensive research effort, and commercial applications are in the early stage of implementation [7]-[10]. The ability to rapidly ‘scan’ fruit on-line, and then sort it, means that if a given characteristic can be accurately measured, fruit can be segregated into distinct classes and either handled or marketed in a different manner. The variety of studied fruit is large, ranging from apple [11]-[13] to melon and pineapple [14], kiwi fruit [15]-[18], citrus [19], mango [20], mandarin [21] [22], peach [23] and pear [24]. More applications and recent developments have been reviewed [25].

Relating spectral data to quality attributes is usually done by partial least square regression (PLS) which refers to the computation of the optimal least-squares fit to part of a correlation or covariance matrix. PLS is quite similar to principal components regression (PCR), but defines the latent variables (principal components) based on the covariance between the independent and dependent variables, rather than on the variance in the independent variables alone [26]. Therefore, the objective of this study is to develop a calibration model and prediction of pH in mango fruit cv. Gedong Gincu.
using NIR spectroscopy. The prediction model was developed by PLS regression.

II. MATERIAL AND METHOD

A. Sample Preparation

The 306 mango fruits cv. Gedong Gincu used in this study were randomly divided into two groups of samples: the first group was used to develop the calibration models (204 samples) and the other for predicting quality and model validation purposes (102 samples). All samples had been harvested from the same farmer orchard during one day at commercial maturity or at the level maturity of 80-85 percent. After acquisition of spectra, pH measurement was carried out using adigital pH meter (D-24, HORIBA).

B. NIR Spectroscopy Analysis

Spectra of mango fruits were collected in the range of 1000–2400 nm with an increment of 5 nm using NIRFlex N-500 (BüchiLabortechnik AG, Flawil, Switzerland) at room temperature of 25°C. Spectra data were collected by measuring the diffuse reflectance of samples. Operation of the instrument and data collection of NIR spectra were conducted by using NIRWare 1.2 software (BüchiLabortechnik AG, Flawil, Switzerland). Chemometric analysis was conducted by using NIRCal 5.2 software (BüchiLabortechnik AG, Flawil, Switzerland).

A large amount of spectral data is usually obtained from NIR instruments and yields useful analytical information [27][28]. However, the data acquired from NIR spectrometer contains background information and noise besides sample information. In order to obtain reliable, accurate and stable calibration models, it is necessary to pre-process spectral data before modeling [29]. Spectral pre-processing techniques are required to remove any irrelevant information including noise, uncertainties, variability, interactions and unrecognized features. Determining of pre-treatment method to develop calibration model of NIR depends on material type and content to be predicted [30]. Pre-treatment normalization between 0 and 1 method could reduce baseline variation. Spectra variation caused by different grain size distributions could be reduced by normalization of spectra [31]. In this study, pre-treatment normalization between 0 and 1 was used to spectral pre-processing technique.

C. Calibration Model

Calibration model was established using PLS algorithm. Statistical parameters used to evaluate the developed NIR calibration model were:

1) Bias, i.e., the average deviation between the reference value \(x_n \) and the predicted value \(y_n \) of V-Set. It is recommended that Bias should equal to zero [32].

\[
\text{Bias} = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)
\]

2) The standard error of calibration set (SEC), i.e., the standard deviation of the differences between the reference value \(x_n \) and the predicted value \(y_n \) of C-Set, corrected for bias.

\[
\text{SEC} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - y_i - \text{Bias})^2}
\]

3) The standard error of validation set (SEP), i.e., the standard deviation of the differences between the reference value \(x_n \) and the predicted value \(y_n \) of V-Set, corrected for bias.

\[
\text{SEP} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - y_i - \text{Bias})^2}
\]

4) Coefficient of correlation \(r \) between the reference value \(x_n \) and the predicted value \(y_n \).

\[
r = \frac{n \sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{\sqrt{[n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2][n \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2]}}
\]

5) Coefficient of determination \(R^2 \) between the reference value \(x_n \) and the predicted value \(y_n \).

\[
R^2 = 1 - \frac{\text{SSR}}{\text{SST}} = 1 - \frac{\sum_{i=1}^{n} (x_i - y_i)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}
\]

6) Coefficient of variation (CV):

\[
\text{CV in C-Set: } CV = \frac{\text{SEC} \times 100}{\bar{x}}
\]

\[
\text{CV in V-Set: } CV = \frac{\text{SEP} \times 100}{\bar{x}}
\]

A very reliable calibration could be achieved when the value of CV in C-Set was lower than 5% and the value of CV in V-Set was lower than 10% [33].

III. RESULTS AND DISCUSSION

Reference data of pH in sample of mango fruits for calibration set and validation set are shown on Table 1. For calibration set, the range of pH was 2.98-4.78 with standard deviation of 0.39. For validation set, pH was 3.03 to 4.56, with standard deviation of 0.37.

TABLE 1

<table>
<thead>
<tr>
<th>REFERENCE VALUES OF pH IN MANGO FRUITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>Calibration</td>
</tr>
<tr>
<td>Validation</td>
</tr>
</tbody>
</table>

A. NIR Spectra Analysis

Fig. 1 and 2 show original spectra and pre-treatment spectra of \(\text{pH} \) in mango fruits. The original one shows that there is a parallel shift of spectra. It occurred because spectra data of NIR did not only contain sample information, but also background information as well as noises. Therefore, pre-treatment was needed before modelling to get reliable, accurate and stable calibration model [29]. Spectra data resulted from diffuse reflectance measurement at solid sample would be followed by scattering noise as a result of particle size difference [34]. This case was supported by [27] who acknowledged that physical properties of solid samples influence spectra of solid samples. Spectra pattern of near infrared reflectance indicated that wavelength of 1215-1395 nm was \(\text{CH}_2 \), 1450 nm and 1940 nm were water, 1765 nm was \(\text{CH}_2 \) and cellulose, and 2252-2400 was carbohydrate.
B. Calibration model

Calibration and validation of NIR spectra were carried out to predict pH of mango fruits. Calibration was obtained based on the correlation between data of NIR reflectance with pH (Table 2). For calibration set, it was obtained that Bias, SEC, CV and R² were -0.0022, 0.03, 0.97% and 0.99, respectively. For prediction set, it was obtained for Bias, SEP, CV and R² were 0.039, 0.012, 3.36% and 0.86, respectively. The result showed that the model has a good correlation. This value was good as [30] stated that calibration model having value of R² between 0.66 and 0.81 indicated approximate quantitative predictions, between 0.82 and 0.90 was considered to be a good prediction, and larger than 0.91 revealed excellent.

SEC and SEP value in this study has a quite small. This result was good since there was a small difference between SEC and SEP values. Good calibration model has a small difference between SEC and SEP, meanwhile, a large difference is an indication of calibration set of not a representative of validation set [35]. When SEP value is larger than two times than SEC, most likely over fitting will occur [36]. However, SEP values of this study were smaller than SEC, which led to prevent the over fitting.

IV. CONCLUSION

This study has established a technique, based on NIR spectroscopy of the fruit, for predicting the internal attribute parameters (pH) of mango fruits cv Gedong Gincu. By means of partial least square (PLS) regression relationship was established between reflectance spectra and pH parameter. PLS method seemed to produce the good calibration results for pH prediction. The predicted values were highly correlated with destructively measured values. The coefficient of correlation (r) of pH was 0.9042 and standard error of prediction (SEP) was 0.012 respectively. It was concluded that by using the NIR spectroscopy measurement system, in the
appropriate spectral range, it is possible to nondestructively predict the pH of mango fruit. Further work may be carried out to develop calibration model and prediction more internal quality attributes of mango fruit.

REFERENCES

